Siegel der Universität Augsburg

Universität Augsburg
Institut für Mathematik

Siegel der Universität Augsburg

 

Oberseminar Differentialgeometrie

 

Professor Dr. Makiko Tanaka
Tokyo University of Science

 
spricht am
 
Donnerstag, 28. März 2019
 
um
 
14:00 Uhr
 
im
 
Raum 1009 (L1)
 
über das Thema:
 

»Maximal antipodal sets and polars of compact Lie groups«

Abstract:
A compact Lie group G with biinvariant metric is a Riemannian symmetric space. Each connected component of the geodesic symmetry sx at x∈G is called a polar of G with respect to x. For example, a polar of the orthogonal group O(n) with respect to the identity matrix can be regarded as the real Grassmann manifold of the k-dimensional subspaces in ℝn for some k. A polar is a totally geodesic submanifold, hence a Riemannian symmetric space with respect to the induced metric and its geodesic symmetries are the restriction of geodesic symmetries on G. On the other hand, a subset A of a compact Riemannian symmetric space is called an antipodal set if sx(y)=y holds for any x,y∈A. Our aim is to classify maximal antipodal sets of compact Riemannian symmetric spaces and to determine the ones whose cardinalities attains the maximum. When a compact Riemannian symmetric space M can be realized as a polar of a compact Lie group G, by using some relation between the conjugacy classes of maximal antipodal subgroups of G and the congruence classes of maximal antipodal sets of M, we can obtain the classification. In this talk I will explain it in some concrete cases. This talk is based on a joint work with Hiroyuki Tasaki.

 

Hierzu ergeht herzliche Einladung.
Peter Quast
 

Kaffee, Tee und Gebäck eine halbe Stunde vor Vortragsbeginn in L-1009



[Impressum]      [Datenschutz]      wwwadm@math.uni-augsburg.de,     Mo 25-Mär-2019 12:18:18 MEZ